Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng-Xia Sun, De-Cai Fu* and Yi-Feng Yu

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: fxsun001@163.com

Key indicators

Single-crystal X-ray study
$T=113 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in solvent or counterion
R factor $=0.044$
$w R$ factor $=0.120$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(Benzotriazol-1-yl) 5-ethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate ethyl acetate hemisolvate

The title compound, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, is an important intermediate in the synthesis of nefidipine-type pharmaceuticals. The crystal packing is stabilized by intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

4-Aryl-1,4-dihydropyridine-3,5-dicarboxylic diesters of the nefidipine type have become almost indispensable in the treatment of cardiovascular diseases since they first appeared on the market in 1975 (Yiu \& Knaus, 1999; Goldmann \& Stoltefuss, 1991). The title compound, (I), is a key intermediate in their preparation.

Fig. 1 shows the structure of (I). The dihydropyridine ring has a flattened boat conformation. This compares well with the structures of 3-(benzotriazol-1-yl)-5-tert-butyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate and nefidipine (Liu et al., 2006; Hofmann \& Cimiraglia, 1990; Ramusino \& Varì, 1999). The ethyl acetate solvent was found to be disordered across an inversion center.

The crystal packing is stabilized by intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see Table 2), which link the molecules into chains running parallel to the a axis.

Experimental

The title compound was prepared by dissolving 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monoethyl ester ($346 \mathrm{mg}, 1 \mathrm{mmol}$) in $28 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ with dicyclohexyl carbodiimide ($206 \mathrm{mg}, 1 \mathrm{mmol}$). Benzotriazol-1-ol ($135 \mathrm{mg}, 1 \mathrm{mmol}$) in 10 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to this solution at 278 K . The reaction
mixture was stirred at $276-279 \mathrm{~K}$ for a further 6 h . The solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was removed by vacuum evaporation at 293 K . The desired compound was purified by chromatography on a silica gel column (eluted by ethyl acetate and petroleum, 1:5) at room temperature. The product (430 mg) was obtained in a yield of 93%. Suitable crystals were obtained by slow evaporation of an ethyl acetate solution.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=507.50$
Monoclinic, $P 2_{1} / n$
$a=10.2988$ (13) \AA
$b=17.092$ (2) A
$c=14.2211$ (17) \AA
$\beta=90.162(4)^{\circ}$
$V=2503.2(5) \AA^{3}$

Data collection

Rigaku Saturn diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.973, T_{\text {max }}=0.986$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.347 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=113(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.22 \times 0.18 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.120$
$S=1.02$
5438 reflections
370 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0708 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97 Extinction coefficient: 0.0196 (16)

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{N} 1$	$1.3718(14)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.3113(17)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.3448(17)$		
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{O} 1$	$119.47(11)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$	$106.98(11)$

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(2)$	$2.17(2)$	$2.9770(18)$	$157.4(18)$

Symmetry code: (i) $x-1, y, z$.
All C-bound H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
A view of the title compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

The H atom on N4 was located in a difference Fourier map and was refined isotropically. The disordered ethyl acetate molecule is located on an inversion center. The $\mathrm{C}=\mathrm{O}$ double bond was restrained to 1.26 (1) \AA, while the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ single bonds were restrained to 1.42 (1) and 1.52 (1) \AA, respectively. The bond angles were also restrained by restraining the $1-3$ atom distances.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

The authors gratefully acknowledge support from Nankai University and Hebei University of Science and Technology.

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Goldmann, S. \& Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 15591578.

Hofmann, H. J. \& Cimiraglia, R. (1990). J. Mol. Struct. (Theochem), 205, 1-11.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Liu, B.-S., Sun, F.-X., Zhou, L.-N., Sun, H. \& Wang, J.-K. (2006). Acta Cryst. E62, o72-o73.
Ramusino, M. C. \& Varì, M. R. (1999). J. Mol. Struct. (Theochem), 492, 257268.

Rigaku (2005). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7.0. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yiu, S. H. \& Knaus, E. E. (1999). Drug Dev. Res. 48, 26-37.

[^0]: © 2006 International Union of Crystallography All rights reserved

